1 0 Ju n 20 09 . BUFFON NEEDLES LANDING NEAR SIERPINSKI GASKET
نویسنده
چکیده
In this paper we modify the method of Nazarov, Peres, and Volberg [14] to get an estimate from above of the Buffon needle probability of the nth partially constructed Sierpinski gasket of Hausdorff dimension 1.
منابع مشابه
2 M ay 2 00 9 . BUFFON NEEDLES LANDING NEAR SIERPINSKI GASKET
In this paper we modify the method of Nazarov, Peres, and Volberg [14] to get an estimate from above of the Buffon needle probability of the nth partially constructed Sierpinski gasket of Hausdorff dimension 1.
متن کاملThe Power Law for Buffon’s Needle Landing near the Sierpinski Gasket
In this paper we get a power estimate from above of the probability that Buffon’s needle will land within distance 3 of Sierpinski’s gasket of Hausdorff dimension 1. In comparison with the case of 1/4 corner Cantor set considered in Nazarov, Peres, and the second author [14]: we still need the technique of [14] for splitting the directions to good and bad ones, but the case of Sierpinski gasket...
متن کاملLee-Yang zeros and the Ising model on the Sierpinski Gasket
We study the distribution of the complex temperature zeros for the partition function of the Ising model on a Sierpinski gasket using an exact recursive relation. Although the zeros arrange on a curve pinching the real axis at T = 0 in the thermodynamic limit, their density vanishes asymptotically along the curve approaching the origin. This phenomenon explains the coincidence of the low temper...
متن کاملAcyclic Edge-coloring of Sierpinski-like Graphs
An acyclic edge coloring of a graph is a proper edge coloring such that there are no bichromatic cycles. The acyclic chromatic index of a graph is the minimum number k such that there is an acyclic edge coloring using k colors and is denoted by χ′a(G). Sierpinski graphs S(n, 3) are the graphs of the Tower of Hanoi with n disks, while Sierpinski gasket graphs Sn are the graphs naturally defined ...
متن کاملSpanning Forests on the Sierpinski Gasket
We present the numbers of spanning forests on the Sierpinski gasket SGd(n) at stage n with dimension d equal to two, three and four, and determine the asymptotic behaviors. The corresponding results on the generalized Sierpinski gasket SGd,b(n) with d = 2 and b = 3, 4 are obtained. We also derive the upper bounds of the asymptotic growth constants for both SGd and SG2,b.
متن کامل